x^2-2x+12=2x(x+10)

Simple and best practice solution for x^2-2x+12=2x(x+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-2x+12=2x(x+10) equation:



x^2-2x+12=2x(x+10)
We move all terms to the left:
x^2-2x+12-(2x(x+10))=0
We calculate terms in parentheses: -(2x(x+10)), so:
2x(x+10)
We multiply parentheses
2x^2+20x
Back to the equation:
-(2x^2+20x)
We get rid of parentheses
x^2-2x^2-2x-20x+12=0
We add all the numbers together, and all the variables
-1x^2-22x+12=0
a = -1; b = -22; c = +12;
Δ = b2-4ac
Δ = -222-4·(-1)·12
Δ = 532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{532}=\sqrt{4*133}=\sqrt{4}*\sqrt{133}=2\sqrt{133}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{133}}{2*-1}=\frac{22-2\sqrt{133}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{133}}{2*-1}=\frac{22+2\sqrt{133}}{-2} $

See similar equations:

| 1/9-x=2x/x+2-44/(x-9)(x-2) | | 3g+2(-2g-2)=-5(-12g+13) | | x+2/3=x/4-1 | | 0.5-5/8x=7/8+3.5 | | 2x=140.25 | | 3n-27=30 | | -4(13z+10)=-6(8z+4) | | 3x÷4=150 | | 9−u=-u−10 | | 3+10m=-6+9m | | -8r−1=-9r−9 | | 10p+4=3+10p | | 0y=-10y | | -4(13z+10)=-6(8z+4 | | 7y+2-2y=17 | | 8x-9x=9 | | 2s-2+11=3+5+1+20-10 | | -7=8-5y | | -15+19s=-5(-6s-19) | | 1.05x=2.56 | | 2x^2+x=5x^2-7 | | m-7/8=10 | | 9−13p=-5p+2p+19 | | 13x-4+11x+12=180 | | 24=-8x-8 | | -3(17m-12)=-5m-4(11m-6) | | -12+8g=-18+8g | | 3+10k=5+10k | | 0.3(0.2x-1)+0.35x=0.95(3x+7)-1.44 | | 10+2j=2j−6 | | 7/7=r | | -10+u=10−4u |

Equations solver categories